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From the definition of an equilibrium and the phenomenological constitutive equation for the 
reaction rate in fluids approximated by a polynomial, expressions are derived for the rates of che-
mical trasformations which have the form of the mass action law of homogeneous kinetics 
in terms of activities or concentrations. These expressions derived for a multicomponent system 
with more reactions include back reactions, autocatalysis, and catalysis; their practical construc-
tion is described in two ways and exemplified. Empirical mass action laws and expressions for the 
reaction rate following f rom irreversible thermodynamics are discussed. 

The empir ical Jaw of mass ac t ion in h o m o g e n e o u s chemical kinetics is t r ad i t iona l ly 
mot ivated by molecu la r concepts . Thei r phenomeno log ica l r eason ing mus t be s o u g h t 
on the basis of t he rmomechan ica l c o n t i n u u m theories , which d o no t m a k e use of t h e 
molecular concept . Classical irreversible t h e r m o d y n a m i c s (e.g., re f . 1 , chap t e r 2-5) 
does no t lead to the mass ac t ion law; in the l inear region of this theory we o b t a i n 
correct results only very close to the equi l ibr ium. Howeve r , we shall show tha t t h e 
mass act ion law fol lows as an a p p r o x i m a t i o n f r o m phenomenolog ica l e q u a t i o n s 
that can be der ived by the m e t h o d s of nonl inear t he rmomechan i c s ( ra t ional t h e r m o -
dynamics) 2 appl ied t o a special mate r ia l m o d e l 3 - 4 . As t o this mode l (a react ing fluid-
mixture with l inear t r anspo r t proper t ies) , it can be a s sumed t h a t it describes well t h e 
material discussed, as a rule, in connex ion with the mass act ion law. This p r o c e d u r e 
was fo rmu la t ed e lsewhere 5 only by examples . It is the a im of the present w o r k to gain 
general f o r m u l a s f o r a m u l t i c o m p o n e n t mixture with m o r e react ions . At first, we 
shall f o r m u l a t e three s tar t ing a s sumpt ions with the aid of r a t iona l t h e r m o d y n a m i c s , 
derive a general expression fo r the reac t ion rate , a n d show t w o al ternat ives of i t s 
practical cons t ruc t ion . This process will be exemplified a n d the relat ion of the resul ts 
to empirical mass ac t ion laws a n d l inear expressions f o r the react ion ra te which fo l l ow 
f rom irreversible t h e r m o d y n a m i c s will be men t ioned in the discussion. 

Starting Assumptions 

We shall consider a fluid mixture of n cons t i tuents (substances) , a m o n g which chemi -
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cal reactions proceed: 

I VwK = 0 , (1) 
a= 1 

where Ba stands for the constituent a and pia is its stoichiometrical coefficient in the 
z-th reaction. In further text, we shall assume that Eq. (1) represents a set of all 
possible reactions for which pirt are whole numbers (p w > 0 for products, pia < 0 
for starting substances, pia = 0 for nonreacting substances in the z-th reaction; 
the latter condition is fulfilled in any reaction for substances that do not react chemi-
cally) and we have 

t Pi , H ( p i a ) £ t P.«[H(P,«) - 1] (2) 
a=1 «= 1 

where H denotes Heaviside function (H(.x) = 1 for x > 0, H(x) = 0 for x ^ 0). 
Such a restriction is possible, since it follows from stoichiometry that for a pheno-
menological description of chemical changes even an arbitrary system of r indepen-
dent chemical reactions is sufficient to choose these r independent reactions from an 
infinite set (7). 

In rational thermodynamics, the chemical changes are expressed by a reaction 
rate vector, J, which can be equivalently represented in two ways2 '4 '6: Either by its 
components Ja(cc = 1,2, . . . n ) , which represent the rates of chemical changes of 
individual substances (in mol of substance a per time unit in a unit volume), or by 
its components J ; ( i = 1 , 2 , . . . r ) , which represent the rates if r independent chemical 
reactions chosen in the description of chemical changes. These quantities are mutually 
connected by the relations (ref 4, Eqs (37), (40), (43), (46), and (47)): 

n r 

J i = Z Z > (3) 
a= 1 j= 1 

it 

where gyi are elements of the matrix j[[ = [|gj i||_1 and = £ (i,j = 1, 
2, .. . r); further a = l 

j8 = i j r
i p l 8 , a = l , 2 , . . . n ; £ J a M a = 0 . ( 4 ) , (5) 

i=1 a= 1 

It follows from the last formula representing the mass conservation law in chemical 
conversions (Ma are molecular masses of species Ba) that only n — 1 quantities Ja 

are independent. Substances which are not chemically converted have, of course, 
Ja identically equal to zero. 

From rational thermodynamics of a reacting fluid mixture with linear transport 
properties (i.e., with linear laws of viscosity, heat conduction, and diffusion)3,4 
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it follows that the reaction rate J depends in such a material only on the temperature, 
T, and molar concentrations of all mixture constituents, C = (c1? c2, ... cn) (ref.3, 
Eq. (40) in specific variables) 

J=J(T,c). (6) 

We note that the independent variables in this constitutive equation are only posi-
tive34 and that this equation applies for all processes, e.g., locally in nonequilibrium 
processes of an open system. In chemical kinetics, we often envisage a special case 
of a closed homogeneous system, in which J{ represent the time changes of the degrees 
of conversion of independent reactions2. In the general case, the degrees of conversion 
cannot be introduced and J{ is obtained from Eq. (i) with the aid of n — 1 indepen-
dent components Ja. Similarly the thermodynamic quantities such as molar chemical 
potential fi = ...jun), are also functions of T and C in all processes (the 
validity of the local equilibrium principle in such a material has been proved)3'4. 
Assuming the existence of an inversion of the latter relations with respect to the con-
centrations and using (6) we obtain the dependence 

J=J(T,H). (7) 

We define the activities of the mixture constituents ax — aa(T\ c) as 

Ai« = + RT\nax, a = 1,2,...«, (5) 

where is the chemical potential of substance a in a chosen standard state. Further 
we shall restrict ourselves to standard states that depend only on the temperature T 
(and not on the concentrations c), i.e., pi° = n°a(T) are chosen functions of the tempe-
rature for all mixture constituents a = 1, 2, ... n. 

By introducing Eq. (#) into (7) we obtain the first starting assumption of the present 
work: The reaction rate J depends only on the temperature Tand on the activities 
a = («1? a2, ... an) in all processes in this material: 

J=J(T,o). (9) 

The independent variables are again positive quantities; the functional form of Eq. (9) 
depends, of course, now on the choice of the standard state. 

For any reaction of the type (i) we now define the following polynomial in acti-
vities o: 

r.(T, a) = f [ - K-^T) f [ flJ'-W^-13, (10) 
a=1 a= 1 
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where the equilibrium constant of the i-th reaction, is defined by the relation 

-RTlnK, = (11) 
a— 1 

The equilibrium constants are positive quantities dependent on the choice of the 
standard states and therefore only on the temperature T. It follows from the definition 
(11) that the knowledge of only r equilibrium constants of some system of indepen-
dent reactions from (1) is sufficient to determine all others. 

We shall call the affinity Ax of i-th reaction the following quantity: 

n 

A; = £ (12) 
«= 1 

(this definition4 differs from the classical one by the sign). 
An equilibrium is defined in rational thermodynamics as a certain class from all 

possible processes2. In the case if chemical changes in our fluid mixture, a part of 
this definition is the condition of zero affinities of independent reactions chosen 
to describe the chemical changes4 (this implies obviously that the affinities of all 
other reactions are also equal to zero). By combining Eqs (12) and (7) it is possible 
to express J as a function of the affinities of independent chemical reactions A = 
= (Au A2, ... Ar) (Eq. (55) in ref.4). With the assumption of continuity of such 
a function and with the use of the inequality (Eq. (52) in ref.4) 

-J.A^O, (13) 

which implies that the entropy production in chemical conversions is nonnegative, 
it can be proved4 that the reaction rate is equal to zero (J = 0) if the affinities 
are equal to zero (A = 0). As follows from Eqs (5), (10) — (12), (this definition of 
equilibrium, A = 0, is equivalent to setting all polynomials R ; equal to zero. 

The second starting postulate of the present work can hence be formulated as 
follows: In the equilibrium (defined by setting the affinities of r independent reactions 
equal to zero) we have for all reactions (l) 

R(T, a) = 0 (14) 

and the rates of chemical conversions are equal to zero 

J = 0 . (15) 

Eq. (14) suggests, with respect to (10), the known relations for the equilibrium con-
stants connecting the equilibrium activity values. 

Collect ion Czechos lov . Chem. Commun. [Vol. 41] (1976] 



Phenomenological Derivation of the Mass Action Law 2135 

The rational thermodynamical concept of an equilibrium as a defined special 
case among all possible cases leads to the hypothesis that the second starting postu-
late (14) , (15) restricts in some way the form of the function (9), which applies for 
all processes, hence also in the equilibrium. We shall derive such a restriction assuming 
that the function (9) can be approximated by a polynomial of a sufficiently high degree 
in a (this is always possible for continuous functions according to the Weierstrass 
theorem). 

Our third starting postulate will hence be: The reaction rates J as functions (9) 
represent polynomials of the degree M in a: 

J = Z * v F K " , (16) 
v a = 0 a = 1 

where v = (v l5 v2, . . . v„) and the coefficients kv depend only on the temperature and 
on the choice of the standard state. If J is represented by Ja or J i ? the coefficients kv 

are represented by the components /c" or k[l) (i = 1, 2, . . . r; a = 1, 2, . . . n). 

Derivation of the Equation for the Reaction Rate 

From the starting postulate (14), (15) about equilibrium follows a restriction for the 
reaction rates (16). For n given substances and degree M of the polynomial we shall 
write all the reactions from (1) for which 

t Vw H(p i a) M (17) a = 1 

(this can be achieved by trial and error by choosing whole numbers p ia in accord 
with stoichiometry, e.g., with Eqs (44) in ref.4). The number, /, of such reactions is 
obviously finite (for sufficiently small M it can be even equal to zero) and the poly-
nomials (10) corresponding to them will be with respect to (2) and (17) of the degree 
at most M. By using these polynomials jRj5 Eq. (16) can be written in an equivalent 
form (in the derivation we shall not express the dependence on T) 

J(a) = iRj(a)Pj(a) + Q(a), (18) 
j = i 

n 
where Pj are general polynomials of the degree M — £ H(p j a) and Q is a poly-

a= 1 
nomial of a degree at most M defined so that neither of its terms can be written 
in the form of a product of some Rj with a polynomial (in the opposite case we carry 
such a term group into the sum in (18)). The vectorial character of Pi and Q is related 
to the fact that these polynomials contain the vectors kv. 

If we now introduce the equilibrium conditions (14) and (15) into (18), we obtain 
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the result 

<?(") = 0 , (19) 

which applies for the equilibrium values of the activities a obeying Eqs (10) and (14). 
With respect to the definition of the polynomial Q, all its coefficients must be identi-
cally equal to zero, i.e., Eq. (19) holds not only in the equilibrium but also generally. 
The reaction rate J has therefore for all processes the form 

Some of the coefficients of the general polynomials P} are possibly superfluous. 
Indeed, by performing the multiplication of Pj in (20) we obtain 

where the summation concerns all coefficients kh of the polynomials Pj (these are 
obviously equal to some of the coefficients kv in (16)), and where the terms R^ repre-
sent products of the expression (10) with various powers of activities. If some of them 
are linearly dependent on one another (which is possible with respect to their form 
and to the fact that the equilibrium constants contained in R'h can be expressed 
with the use of the equilibrium constants of only r independent reactions), then the 
number of independent coefficients kh is equal to the number, q, of linearly inde-
pendent R'h terms, hence other coefficients (and the corresponding dependent R'h 

terms) can be left out from the sum (21). In general, there exist more ways of the 
choice of dependent R'h terms, i.e., more equivalent forms of Eq. (21) with the same 
number q of independent coefficients kb. Mutually dependent terms can be found, 
e.g., as follows: We note down various products of powers of the activities from all 

terms in Eq. (21) and we join by a line the pairs which compose each of them. 
Those R'h terms which are dependent form in this scheme a cycle and the number 
of such cycles gives the number of the coefficients kh which can be left out. Now we 
rearrange the reduced expressions (21) with the aid of (10) again into the form (20), 
where the polynomials Pk will be no more general and where the sum is restricted 
to m 5s / (the equality occurs if all R^ terms in (21) are linearly independent, or if 
we choose from more equivalent notations that for which m = I. In the special 
case of a single independent reaction (r = 1) all reactions (l) are multiples of one 
of them, hence the resulting form can be rearranged so that m = 1). Thus, we arrive 
at the final equation for the reaction rate J in fluids with linear transport properties 
in the form 

!{<•) = E K jM H«) • (20) 

J(°) = I KK<"), (21) h 

m 

J(T, a) = T R,(T, a) Pk(T, <.) . (22) 
fc= 1 
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This result has the form of the mass action law in terms of activities involving back 
reactions, homogeneous autocatalysis, and catalysis (the activities of the mixture 
constituents which are chemically inert do not occur in Rk). We shall denote the in-
dependent coefficients kh (or the components of these vectors) contained in the poly-
nomials Pk as rate constants, which, similarly as the equilibrium constants Kk con-
tained in Rk, depend only on the temperature and on the choice of the standard state. 

Besides the method described above, if the value of M is not too large, we can pro-
ceed in constructing Eq. (22) by the following elimination method5 : We choose r 
independent reactions from (1) and write for them the starting assumptions (14). 
From them we can express r equilibrium activities (and this uniquely since aa and K{ 

are positive), which can be introduced into the polynomials (16) with the use of (15). 
After rearrangement we obtain a polynomial in the remaining n-r activities which 
is identically equal to zero for an infinite number of values of such activities that can 
be in the equilibrium changed independently on one another. In this way we conclude 
that some of the coefficients kv must be equal to zero, others are connected through 
the equilibrium constants K{ of the chosen system of independent reactions. In view 
of the identical validity of these results (namely, they contain quantities which depend 
only on the temperature) they can be introduced into the original Eq. (16) and in 
this way we obtain the result (22) (such a substitution can be performed in several 
ways reflected again in several equivalent notations of Eq. (22)). 

It should be noted that both mentioned modes of constructing Eq. (22) may be 
carried out with only one component of the vector J since the other expressions are 
similar and differ only by the values of the components of kh. 

The rate constants kh in Eq. (21) represent k^ or k^ according to whether the 
reaction rate J is represented by Jx or Ja (i = 1,2, ... r; a = 1, 2, ... n; h = 1,2, ... q). 
Their name is motivated by the fact that represent (regardless to their sign) 
the classical rate constants of back reactions corresponding to Rk in Eq. (22), and 
the rate constants of forward reactions can be obtained by multiplying them with the 
corresponding constants Kk, so that the familiar property of the rate constants of 
opposed reactions is preserved. 

Since Eqs (3) —(5) apply for both representations of J, it follows f rom the form 
of Eq. (22) that analogous relations hold also among the rate constants in both 
representations 

= i t Ps,c,yxk^ , W = i k?pia , (23), (24) 
a=1 j=1 f = l 

X k^Ma = 0 , i= 1,2,... r; k = 1,2, ...q; a = 1,2, . . . n, (25) 
a= 1 

where g}i have the same meaning as in Eq. (3). 
If the constants k^ of one system of r independent reactions are known (e.g., f rom 
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experiments in a homogeneous system), the mentioned relations enable to calculate 
the constants k\and on their basis also the constants k o f any other system of r 
independent reactions (even of such a system which is not contained in (1), i.e., 
which does not fulfil the relation (2) and whose stoichiometric coefficients are not 
whole numbers). Besides that, such a system can be used also in constructing 
Eq. (22), and in the representation of J = ( J x , J 2, ••• J„) the result (22) will not depend 
on the system of r independent reactions chosen for the description of chemical 
processes (if we disregard the eventual expressing of Kk with the aid of the equilibrium 
constants of independent reactions). 

The number of vectors kh is in all equivalent notations equal to q, therefore the 
representation by independent reactions J = ( J t , J2, JT) gives the number, qr, 
of the rate constants which fully describe the kinetics of the system of n compo-
nents and r independent reactions when J is approximated by the polynomial (16) 
of M-th degree. This number is not larger than the number of q(n — l) independent 
constants k^ in the representation by the conversion rates J = ( J l 5 J 2 , . . . J„) 
because of the relations r < n and (25). 

It should be noted that the inequality (13) imposes a restriction as to the sign of 
the rate constants. 

In practice, the special case of fluids is most often studied that permit the choice 
of the standard state in such a way that 

a = c (26) 

(e.g., a mixture of ideal gases). In this case3 the starting assumption (9) takes the form 
of (6), the assumption (14) represents equilibrium constants in terms of concentra-
tions, and the assumption (16) a polynomial in concentrations. Hence, the result 
will be Eq. (22) containing concentrations instead of activities and we arrive at the 
common mass action law in concentrations. 

ILLUSTRATIVE EXAMPLES 

We shall first consider a mixture of three components with a single independent chemical reaction 

B3 = B 1 + 2 B 2 . (27) 

The system (7) is formed by all whole-numbered multiples of the reaction (27). If we restrict 
ourselves to M ^ 5, then this reaction will be the only one from the system (7) obeying the condi-
tion (77) (for M ^ 2 no such reaction exists), so that, e.g., for M — 3 Eq. (22) takes the form 

J = (axal - Ka3) kl , (28) 

where J is the rate of the reaction (27) and K its equilibrium constant. The rate J can be expressed 
with the aid of Eqs (7), (3), (5), and (27) as follows: 
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J = + 2 J 2 - J3) = i [ J 1 ( 2 M 1 + 2 M 2 ) / M 3 + J2(2M1 + 5 M 2 ) / M 3 ] . (29) 

If the affinity is negative, the expression R1 = ata2 — Ka3 is also negative (according to Eqs (8), 
(9), and (12)) and according to the entropic inequality (13) the J value is positive, hence the rate 
constant kl in Eq. (28) is negative. This is in agreement with the expected form of the mass 
action law, since in this case the reaction (27) proceeds f rom the left to the right, —Kkx and — ky 

are the classical rate constants of the forward and back reactions, respectively, Jx, J2, and hence 
by Eq. (29) also J are positive quantities. In the special case of a closed homogeneous system 
we have J2 = 2 J y and hence J = Jx after Eq. (29). 

For M = 6 we find that Eq. (20) contains two terms: corresponding to the reaction (27) 
with a general polynomial Pl of the third degree, and R2 corresponding to the doublet reaction 
(27) with P2 equal to constant. By rearranging into the form (21) it turns out that a linear rela-
tion exists among three terms, hence f rom the original 21 constants 20 independent ones 
remain. If we write the result (22) with m = I = 2, we obtain a similar form as before except 
that, e.g., in P j the term containing a3 is missing. Another equivalent form of (22) with m = 1 
and a polynomial of the third degree can be obtained more easily in view of the fact that only 
one independent reaction proceeds in the mixture (as already mentioned in the derivation of Eq. 
(22)). 

We now shall treat this case by the elimination method for M = 4 restricting ourselves for the 
sake of simplicity to the special case (26). The first and third starting assumptions (P) and (16) 
take the form 

J = J(T, cu c2, c3) = £ kVlV2V3{T) c\'c?cl\ vA + v 2 + v 3 ^ 4 (30) 
V l . V 2 . V 3 

and the starting assumption of an equilibrium (14), (15) is 

K = c.cllc, , J = 0 . (31) 

By eliminating c, f rom (30) and (31) and rearranging we obtain a polynomial in c2 and c3 equal 
to zero, whence follow the general conditions 

Kki2o + ^ooi = Kk220 + k w l = 0, 

Kkj3Q + k0ll = 0 , Kk12l + k002 = 0 , (32) 

whereas the remaining coefficients £VIV2V3 are identically equal to zero. By introducing (32) 
into (30) and rearranging into the form corresponding (27) we obtain finally the result of the type 
(22) 

J = ( c j c 2 - Kc3)(kl20 + k220cl + k130c2 + kl2lc3) . (33) 

For M= 3, this result is reduced to Eq. (25) (by the additional condition (26) we have kl = 
~ ki20); the additional terms in (33) can be interpreted as the influence of autocatalysis. 

We now shall consider a mixture of four components, B t through B 4 , with a single reaction 
(27), where the nonreacting component B 4 influences the reaction rate J — J(T, c 1 , c2, c3, c 4 ) 
(we shall again restrict ourselves to the case (26)). With similar assumptions (Eq. (30) for n = 
= M = 4, Eq. (31)) we arrive at the result (33) supplemented by a term proportional to c4 . 
• (c1cI — ^ 3 ) , which can be interpreted as a homogeneous catalysis by the component B 4 . 
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As an example of a system with more reactions, we shall consider a mixture of atoms Bj, 
diatomic molecules B2 , and triatomic molecules B3 . Here there are possible two independent 
reactions, for example 

2 B 3 = 3 B 2 , B 3 = 3 B t . {34), (35) 

Assuming the case (26), we shall seek the conversion rates Ja (a = 1,2, 3). By the elimination 
method, when the starting assumption (14) is represented by the expressions for the equilibrium 
constants K4 and Ks in concentrations for the reactions (34) and (35), the result for M — 2 
will be 

Ja = (c\ - KxC2) k%0 + (cic2 - K2c3) fc<->0 + (d - K3CxC3) k$0 (36) 

with -

Kx = K ^ K f , K2 = K$Kf , K3 = . (37) 

This is in the form of (22), since the reactions 

B 2 = 2 B i , B 3 = Bx + B2 , B j + B 3 = 2 B , (38), (39), (40) 

have their equilibrium constants Kx, K2, K3, respectively, which fulfil Eqs (37). 
When using the direct method of constructing the expression for J in this case, we first find all 

reactions of the type (1) that fulfil the condition (17). This can be achieved, e.g., as follows: It 
turns out from the stoichiometry (ref.4, Eq. (44)) that the stoichiometrical coefficients of the z'-th 
reaction fulfil in this case the equation pn + 2p i 2 + 3p i 3 — 0; by a choice of all whole-numbered 
pi2 and pi3 values not exceeding by their absolute value a fixed limit M, all such reactions can be 
found. For M ^ 1 no such reaction exists, for M = 2 we have the reactions (38)—(40) and for 
M = 3 also (34) and (35). For M— 2, the constructed reacti on rate (20) represents directly the results 
(36), since no other reduction is possible. For M = 3 the value of 1 in Eq. (20) is equal to 5; by re-
arranging into the form of (21) we find out that a linear dependence exists among four triplets 
of the terms. We shall mention two of the possible equivalent forms of Eq. (22) in this case, 
the first one for m — I = 5, the second one for m— 3: 

J = ( c \ - K,C2) I X + k 2 c 3 ] + (cxc2 - K2C3) [ k 3 + K4c1 + k 5 c 3 ] + 

+ (c2
2 - K3C1C3) [fc6 + klCl + k8c3] + (cl - KAcj) k9 + (c\ - K5c3) kl0 = 

= (c\ - KxC2) + k 1 0 c x + k 2 c 3 ] + (cyc2 - K2c3) [ ( k 3 + k10KT) + 

+ kAcx + ( k 5 + k9K3) c3] + (c2
2 - K3CXC3) [ k 6 + k 7 c x + k9c2 + k 8 c 3 ] . (41) 

Here we have ten independent rate constants kh (in the second expression these constants are 
expressed by those in the first one). For M = 2, Eq. (41) is reduced to the form of (36), the rate J 
being expressed by Ja, i.e., 4a

0>o = k["\ = 4 a>, k{
0% = k^ (obviously = 0). If we 

choose for expressing J two independent reactions (38) and (39), their rates Jx and J2 have a form 
similar to (36) with the rate constants - ( 4 2 ) + 4 3 ) ) and — k[ 3 ) as follows from Eqs (23) and 
(25); k\a) denotes the rate constants in Eq. (36) (a = 2,3; v = (200), (110), (020)). 
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The chemical conversions in this case of three components with two independent chemical 
reactions can hence be entirely described by two equilibrium and six rate constants in an ap-
proximation of the second order (or twenty rate constants in a third-order approximation. 

DISCUSSION 

For a reacting fluid mixture with linear transport properties and in an approximation 
of the constitutive equation for the reaction rate by a polynomial in terms of acti-
vities or concentrations, expressions were obtained that have the form of the mass 
action law of homogeneous chemical kinetics, Eq. (22). The described method leads 
to the mass action law in terms of only positive, whole-numbered powers of the 
variables corresponding to the stoichiometry. Fractional or negative powers occurring 
in the empirical expressions for the reaction rate can be obtained by introducing 
additional hypotheses analogous to those used in proposals of reaction mechanisms. 
As an example, we shall discuss the conversion of ozone, 0 3 ( = B3), to molecular 
oxygen, 0 2 ( = B2), a direct reaction of the type {34). By applying the mentioned 
method to this reaction we do not obtain the negative first order with respect to oxy-
gen, as found experimentally in a certain range of conditions7. Let us assume, however, 
that atomic oxygen, O ( = B,), coexists with 0 2 and 0 3 , hence two independent 
reactions are possible. Since the sought expression for the reaction rate is indepen-
dent of the choice of these reactions, the reaction (34) of the conversion can be chosen 
as the first one, while the other can be an arbitrary reaction involving atomic oxygen, 
Bx, for example (35). The assumption (26) is acceptable and therefore the approxima-
tion of Eq. (6) by a polynomial of the second or third degree leads to the result (36) 
or (41). We shall consider the result (36) for a = 3 (ozone) and assume that the fol-
lowing two additional assumptions hold in a certain range of conditions: k(2oo 
negligible against 0 and /c^0 , i.e., Eqs (39) and (40) represent the mechanism of 
the conversion (34), and the reaction (39) is in the equilibrium, i.e., c, = K 2 cJ 1 c 3 . In 
this way, Eq. (36) is reduced to its last term, from which we eliminate the concentra-
tion of atomic oxygen c1 by using the just mentioned relation and obtain 

K = ~k(
0%K4c^cl + k(

0%c2
2 , a = 3 , (42) 

where we used Eq. (37). The equilibrium constant, K4, of the conversion (34) is large 
and Eq. (42) is therefore in accord with the experiments under restricted conditions7. 

The results of the present work could be useful, e.g., in proposing mechanisms 
in homogeneous kinetics. If we know a priori all components of the mixture (including 
unstable intermediate products), we can determine the most general expression for 
the reaction rate and the maximum number of equilibrium and rate constants cha-
racterizing such a system. From the phenomenological point of view there is an 
infinite number of equivalent systems of independent reactions describing chemical 

Collection Czechos lov . Chem. Commun. [Vol. 41] [1976] 



2142 Samohyl, Malijevsky 

changes in such a system, and if we know the mentioned constants of one of them 
it is possible to determine these quantities for any other independent system. As 
already shown on the derivation of Eq. (42), only additional hypotheses following 
f rom the experience or f r o m molecular models (in substance about the relative magni-
tude of the rate and equilibrium constants and concentrations such as assumptions 
about equilibrium or the Bodenstein approximation) lead to an additional reduction 
of the general expressions. In this way we obtain, besides others, the concepts of 
direct, reversed, consecutive, and parallel reactions as special cases. I we restrict 
ourselves, e.g., to bi- or trimolecular reactions, we can use in the general expressions 
the approximations M = 2 or 3. 

The fact that we obtained expressions of the type of the mass action law depends 
in a decisive manner on the choice of independent variables in the constitutive equa-
tion fo r the reaction rate. In choosing concentrations or activities (such a mass action 
law is sometimes mentioned 8) we can expect a rapid convergence, which naturally 
follows f r o m the experience or f r o m molecular concepts (at least in the case of con-
centrations, i.e., with the validity of Eq. (26)). F r o m a purely phenomenological 
point of view, all choices of the independent variables in the expressions fo r the re-
action rate are equivalent. However, if we choose the affinities as the independent 
variables (compare the derivation of Eq. (13)), it is necessary to use more terms of 
the polynomial to obtain correct results. This is the choice made by nonequil ibrium 
thermodynamics 1 which, however, by restricting itself to linear terms of the poly-
nomial expansion gives results applicable only close to the equilibrium. It seems 
therefore that dividing the terms in the entropy product ion into "f luxes" and "forces" 
(compare the inequality (13)), which is characteristic for irreversible thermodynamics 1 , 
need not be always advantageous. In contrast , in rational thermodynamics the 
choice of independent variables leading to Eq. (6) is quite natural (the principle 
of determinism2) and in other linear irreversible processes gives similar results as 
irreversible thermodynamics 4 . 
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